Purkinje cell responses during visually and vestibularly driven smooth eye movements in mice

نویسندگان

  • Akira Katoh
  • Soon-Lim Shin
  • Rhea R Kimpo
  • Jacob M Rinaldi
  • Jennifer L Raymond
چکیده

INTRODUCTION An essential complement to molecular-genetic approaches for analyzing the function of the oculomotor circuitry in mice is an understanding of sensory and motor signal processing in the circuit. Although there has been extensive analysis of the signals carried by neurons in the oculomotor circuits of species, such as monkeys, rabbits and goldfish, relatively little in vivo physiology has been done in the oculomotor circuitry of mice. We analyzed the contribution of vestibular and nonvestibular signals to the responses of individual Purkinje cells in the cerebellar flocculus of mice. METHODS We recorded Purkinje cells in the cerebellar flocculus of C57BL/6 mice during eye movement responses to vestibular and visual stimulation. RESULTS As in other species, most individual Purkinje cells in mice carried both vestibular and nonvestibular signals, and the most common response across cells was an increase in firing in response to ipsiversive eye movement or ipsiversive head movement. When both the head and eyes were moving, the Purkinje cell responses were approximated as a linear summation of head and eye velocity inputs. Unlike other species, floccular Purkinje cells in mice were considerably more sensitive to eye velocity than head velocity. CONCLUSIONS The signal content of Purkinje cells in the cerebellar flocculus of mice was qualitatively similar to that in other species. However, the eye velocity sensitivity was higher than in other species, which may reflect a tuning to the smaller range of eye velocities in mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cerebellar flocculus and ventral paraflocculus Purkinje cell activity during predictive and visually driven pursuit in monkey.

Purkinje cells in the flocculus and ventral paraflocculus were studied in tasks designed to distinguish predictive versus visually guided mechanisms of smooth pursuit. A sum-of-sines task allowed studies of complex predictive pursuit. A perturbation task examined visually driven pursuit during unpredictable right-angle changes in target direction. A gap task examined pursuit that was maintained...

متن کامل

Purkinje cells of the cerebellar dorsal vermis: simple-spike activity during pursuit and passive whole-body rotation.

To track a slowly moving object during whole body rotation, smooth-pursuit and vestibularly induced eye movements must interact to maintain the accuracy of eye movements in space (i.e., gaze), and gaze movement signals must eventually be converted into eye movement signals in the orbit. To understand the role played by the cerebellar vermis in pursuit-vestibular interactions, in particular whet...

متن کامل

Interaction of plasticity and circuit organization during the acquisition of cerebellum-dependent motor learning

Motor learning occurs through interactions between the cerebellar circuit and cellular plasticity at different sites. Previous work has established plasticity in brain slices and suggested plausible sites of behavioral learning. We now reveal what actually happens in the cerebellum during short-term learning. We monitor the expression of plasticity in the simple-spike firing of cerebellar Purki...

متن کامل

Short-latency primate vestibuloocular responses during translation.

Short-lasting, transient head displacements and near target fixation were used to measure the latency and early response gain of vestibularly evoked eye movements during lateral and fore-aft translations in rhesus monkeys. The latency of the horizontal eye movements elicited during lateral motion was 11.9 +/- 5.4 ms. Viewing distance-dependent behavior was seen as early as the beginning of the ...

متن کامل

Visual-vestibular interaction with telescopic spectacles.

Vestibularly and visually driven eye movements interact to compensate for head movements to maintain the necessary retinal image stability for clear vision. The wearing of highly magnifying telescopic spectacles requires that such compensatory visual-vestibular interaction operate in a quantitative regime much more demanding than that normally encountered. We employed electro-oculography to inv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015